The study of biochemical markers resistance in Melia azedarach seedlings under heat stress

N. Benkouachi, D. Alatou, H. Rejeb

Abstract


Abstract: The present study aims at investigating the thermal stress effect on the physiology of ornamental Melia azedarach seedlings to adjust to high temperatures. The heat stress was carried out through raising temperature degrees of 38 °C, 42 °C and 44 ° C for a period of 3 hours. The results showed that proline and soluble sugar accumulated in response to high temperatures, the highest values have been observed at the roots at 44°C where the experimenter recorded a rate of increase ranging from 976.92% to 987.96% respectively. Soluble proteins content quantity in the leaves increased more than that one in the stems and roots. The highest values were observed at 42°C and represented by a percentage of 56.64%. Activities of the antioxidant enzymes; CAT (catalase) and POD (peroxidase) were significantly increased by heat stress at 38°C. Then, the rate of the activity declined with the increase of the temperature. The results obtained from the process made the situation easier and help to identify the possible applicable stress indicators to the urban growing of the Melia plant in order to avoid the problems of premature aging urban trees vitality.


Full Text:

PDF

References


Acemi, A.; Avci Duman,Y.; Yuzugullu Karakus,Y.; Özen, F. A preliminary investigation on developmental and biochemical responses of Amsoniaorientalis to ultraviolet-C irradiation. Adv Hort Sci 32(4) (2018) 563-568.

Agrawal, GK.; Rakwa lR.; Jwa, NS.; Agrawal, VP. Effects of signaling molecules, protein phosphatase inhibitors and blast pathogen (Magnaporthegrisea) on the mRNA level of a rice (Oryza sativa L.) phospholipid hydroperoxide glutathione peroxidase (OsPHGPX) gene in seedling leaves. Gene (2002) 283:227–236.

Alatou, D.; Benderradji, MH.; Achi, D.; Megoura, H. La foresterie urbaine. L’environnement en Algérie Impacts sur l’écosystème et stratégies de protection, laboratoire d’études et de recherche sur le Maghreb et la Méditerranée. Université Constantine (2001) 135-140.

Anjum, NA.; Ahmed, I.; Mohmood, I.; Pacheco, M.; Duarte, AC.; Pereira, E.; Umar, S.; Ahmed, A.; KhannaIqbal, M. Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids a review. Environ Exp Bot (2012) 75:307–324.

Belkhodja, M.; Benkablia, M. Proline response of faba bean (Viciafaba L.) under salt stress. Egypt J of AgricRes 78 (2000) (1)185¬-195.

Benkouachi, N.; Alatou, Dj. Le SIG et la gestion des espaces verts de la ville d’El Khroub. Revue des Science &Technologie (2017) 45:17-24.

Berli, FJ.; Alonso, R.; Bressan-Smith, R.; Bottini, R. UV-B impairs growth and gas exchange in grapevines grown in high altitude. Physiol Plantarum 149 (2013) (1): 127-140.

Boston, RS.; Viitanen, PV.; Vierling, E. Molecular chaperones and protein folding in plants. Plant Mol Biol (1996) 32: 191-222. 9.

Bradford, MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dibinding, Anal Biochem (1976) 199: 91.

Breusegem, FV.; Vranova, E.; Dat, JF.; Inze, D. The role of active oxygen species in plant signal transduction. Plant science 161 (2001) (3):405-414.

Chance, B.; Maehly, AC. Assay of Catalase and Peroxidases. Methods in Enzymology (1955) 11: 764-775.

Choi, Y.; Lee, SM.; Chun, J.; Lee, HB.; Lee, J. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinusedodes) mushroom. Food Chem (2006) 99:381–387.

Dar, MI.; Naikoo, MI.; Rehman, F.; Naushin, F.; Ahmad Khan, F. Proline Accumulation in Plants: Roles in Stress Tolerance and Plant Development. Osmolytes and Plants Acclimation to Changing Environment. Emerging Omics Technologies: Nafees (2016) 155-166.

David , JC.; Grongnet, JF. Les protéines de stress. INRA Prod Anim 14(2001) (1):29-40.

De Kok, LJ.; Oosterhuis, FA. Determination of Cysteine and its Accumulation in Spinach Leaf Tissue upon Exposure to Excess Sulfur. Journal of Plant Physiology133(1983) (4):502-505.

Dubois, M.; Gilles, KA.; Hamilton, JK.; Pebers, PA.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal Chem 28 (1956) (3):350-356.

Feierabend, J.; Kemmerich, P. Mode of interference of chlorosis-induced herbicides with peroxisomal enzyme activities. Physiol Plant 57 (1983) 346-351.

Foyer, CH.; Noctor, G. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum 119 (2003) (3): 355-364.

Gill, SS.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochemistry 48 (2010) (12):909-30.

Grudkowska, M.; Zagdanska, B. Multifunctional role of plant cysteine proteinases. Acta biochimica Polonica 51(2004) (3):609-24.

Guy, C.; Kaplan, F.; Kopka, J.; Selbing, J.; Hincha, DK. Metabolomics of temperature stress. Physiol Plant132 (2007) (2):220-35.

Haichour, R. Stress thermique et limite écologique du Chêne vert en Algérie. Mémoire de magistère UMC (2009) 90-104.

Hamli, S. Étude de la tolérance du blé dur (triticumturgidum L. var. durum) au choc thermique : criblage des plantules et déterminisme génétique de la tolérance. Thèse de Doctorat en Science (2015) 40-47.

Havaux, M. Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant Cells & leaves Environnement 16 (1993) (4): 461-467.

Jangpromma, N.; Kitthaisong, S.; Daduang, S.; Thammasirirak, S. 18 kDa protein accumulation in sugarcane leaves under drought stress conditions. KMITL Sci Tech J (2007) 7: 44-54.

Janmohammadi, M.: Zolla, L.; Rinalducci, S. Low temperature tolerance in plants: changes at the protein level. Phytochemistry (2015) 117:76–89.

Kotak, S.; Larkindale, J.; Lee, U.; Von Koskul-Dring, P.; Vierling, E.; Schrf, KD. Complexity of the heat stress response in plants. CurrOpin Plant Biol (2007) 10:310–316.

Leprince, O.; Hendry, GAF.; McKersie, BD. The mechanisms of desiccation tolerance in developing seeds. Seed Sci Res (1993)3: 231-246.

Mac Adam, JW.; Nelson, CJ.; Sharp, RE. Peroxidase activity in the leaf elongation zone of Tall fescue (I). Plant Physiol 99 (1992) (3): 872–878.

Navrot, N.; Collin, V.; Gualberto, J.; Gelhaye, E.; Hirasawa, M.; Rey, P.; Knaff DB.; Issakidis E.; Jacquot, JP.; Rouhier, N. Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol (2006) 142:1364–1379.

Ohama, N.; Sato, H.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Transcriptional regulatory network of plant heat stress response. Trends Plant Sci (2017) 22:53–65.

Oukarroum, A. Vitalité des plantes d'orge ("Hordeumvulgare" L.) en conditions de stress hydrique et thermique analysée par la fluorescence chlorophyllienne. Université de Genève (2007) 488p.

Quartacci, MF.; Navari-Izzo, F. Water stress and free radical mediated changes in sunflower seedlings. Journal of Plant Physiology 139 (1992) (5):621-625.

Rached Kanouni, M.; Adaptation du chêne liège (Quercus suber L.) aux conditions extrêmes de température. Thèse de doctorat université Frères Mentouri Constatntine, Algérie, (2013) p. 99-105.

Razavi,F.;Hajilou,J. ;Aghdam ,MS. Salicylicacidtreatment of peachtreesmaintainsnutritionalquality of fruits during cold storage. Adv Hort Sci 32 (2018) (1): 33-40.

Rejeb, H. ; Khelifa Bedhioufi, S. Lectures et Analyses des Paysages Méditerranéens. Université Virtuelle de Tunis (2010) P 17-19.

Rejeb, IB.; Pastor, V.; Mauch-Mani, B. Plant responses to simultaneous biotic and abioticstress: molecular mechanisms. Plants Basel 15 3 (2014) (4):458-75.

Rivero, RM.; Ruiz, JM.; Garcia, PC.; Lopez –Lefebre, LR.; Sanchez, E.; Romero, L. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Science (2001) 160: 315- 321.

Roy, A.; Saraf, S. Limonoids: Overview of Significant Bioactive Triterpenes 350 Distributed in Plants Kingdom. Biol Pharm Bull 29 (2006) (2), 191-201.

Selvaraj, M.; Mosses, M. Efficacy of Melia azedarach on the larvae of three mosquito 362 species Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: 363 Culicidae). Europ Mosquito Bulletin (2011) 29,116-121.

Shinde, SS.; Deokule, SS. Studies on different physiological parameters under Water stress condition in different wheat cultivars. International Journal of Science and Research 4 (2015) (5):640-644.

Smirnoff, N. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol (1993) 125: 27-58.

Srivalli, BG.; Sharma Khanna-Chopra, R. Antioxidativedefence system in an upload rice cultivar subject to increase intensity of water stress following by recovery. Physiol Planta 119 (2003) (4): 503-512.

Sudhakar, C.; Lakshmi, A.; Giridarakumar, S. Changes in the antioxidant enzyme efficiacy in two high yielding genotypes of mulberry (Morusalba L.) under NaCl salinity. Plant Sci (2001) 161: 613-619.

Taabni, M.; Moulay-Driss, E. Eau et changement climatique au Maghreb : quelles stratégies d’adaptation ?. Les Cahiers d’Outre-Merp (2012) 493-518.

Tomiczek, C. The Asian Longhorned Beetle Anoplophoraglabripennis –Affliction situation and control measures in Austria. Nachrichtenbl Deut Plants Schutzd (2003) 55: 79-80.

Touaba, C. Valorisation du Pin pignon (Pinus pinea L.) dans la région de Djebel Ouahch Constantine. Thèse de doctorat3èmecycle Université des Frères Mentouri Constantine (2018) p. 174-175.

Touaba, C. ; Alatou, Dj. Adaptation des semis de Pin pignon ( Pinuspinea ) au stress combiné hydrique et thermique par des marqueurs biochimiques. Journal of Applied Biosciences (2017) 114: 11393 - 11403.

Troll, W.; Lindsley, J. A photometric method for the determination of proline. J Biol Chem 215 (1955) (2):655-60.

Vishnukanta, ACR. Melia azedarach: A phytopharmacological review. Pharm Rev 2 (2008) 367 :173-184.

Wang, ML.; Zhu, XJ.; Wang, WD.; Wang, XQ.; Lin, ML.; Li, XH. Molecular cloning and expression analysis of low molecular weight heat shock protein gene CsHSP17.2 from Camellia sinensis. J Nanjing Agric Univ 38 (2015) (3):389–394.

Wang, WX., Vinocur, B.; Shoseyov, O.; Altman, A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci (2004) 9:244–252.

Wang, YX.; Liu, ZW.; Li, H.; Wang, WL.; Cui, X.; Zhang, J. Stress Physiology of Tea in the Face of Climate Change. Understanding Response of Tea Plants to Heat Stress and the Mechanisms of Adaptation. Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University Nanjing (2018) 25-31 P.

Williams, LE. Photoassimilate Distribution in lants and Crops: Source-sink relation ships.GrapeIn: E. a. S. Zamski and A. A. Schaffer. New York Marcel Dekker Inc (1996) 851-81.

Zhang, J.; Kirkham, MB. Drought-stress-induced changed in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiology 35(1994) (5):785-791.

Zapata, C. Suivi pluriannuel de la mise en place et de la mobilisation des réserves carbonées et azoté chez 2 cépages de vigne présentant une sensibilité à la coulure. Institut National Agronomique Paris-Grignon (1998) 69-77 pp.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License. Copyright UMMB © 2020 University M'hamed Bougara - Boumerdes. Independance AV., Boumerdes, 35000 Algeria, Tel/Fax: +213 24 91 14 98/ +213 2491-29-51