Estimation of global solar radiation using adaptive neuro-fuzzy inference system

D. Benatiallah, K. Bouchouicha, A. Benatiallah, A. Harouz, B. Nasri

Abstract


Abstract: In this paper, a hybrid intelligent system technique, named adaptive neuro-fuzzy inference system (ANFIS) has been used to estimate global solar radiation models under all sky condition. fifteen ANFIS based models were developed based on astronomical and meteorological parameters, namely, average air temperature (Tavg), relative humidity (RH), declination (DE), hour angle (HA) and extraterrestrial solar irradiation (H0), during one year at four meteorological stations across different climatic regions of Algeria were considered. Models efficiency were evaluated using statistical tests, including mean bias error (MBE), root mean squared error (RMSE), mean absolute percentage error (MAPE), and coefficient of determination (R2). The results showed that, the model 2 in the first scenario with input temperature average, relative humidity, hour angle and using the function gbellmf MFs offered the best combination for predicting global solar radiation compared to other models in all stations. This model can be used for heating, cooling and designing solar energy systems in arid and semi-arid climatic region when data are available.


Full Text:

PDF

References


Junliang, F.; Xiukang, W.; Fucang, Z.; Xin, M.; Lifeng, W. Predicting daily diffuse horizontal solar radiation in various climatic rons of China using support vector machine and tree-based soft computing models with local and extrinsic climatic data. Journal of Cleaner Production (2019).

Khorasaninejad, E.; Hajabdollahi, H. Thermo-economic and environmental optimization of solar assisted heat pump by using multi-objective particle swam algorithm. Energy 72 (2014) 680-90.

Rizwan, M.; Jamil, M.; Kirmani, S.; Kothari, D. Fuzzy logic based modeling and estimation of global solar energy using meteorological parameters. Energy 70 (2014) 685-91.

Casares, F.; Lopez-Luque, R.; Posadillo, R.; Varo-Martinez, M. Mathematical approach to the characterization of daily energy balance in autonomous photovoltaic solar systems. Energy 72 (2014) 393-404.

Piri, J.; Shamshirband, S.; Petkovic, D.; Tong, C.; Rehman, M. Prediction of the solar radiation on the Earth using support vector regression technique. Infrared Physics & Technology (2014).

Benatiallah, D.; Benatiallah, A.; Bouchouicha, K. and Nasri, B. Estimation of clear sky global solar radiation in Algeria. AIMS Energy 7 (2019) 710–727.

Bouchouicha, K.; Hassan, M.; Bailek, N.; Aoun, N. Estimating the global solar irradiation and optimizing the error estimates under Algerian desert climate. Renew Energy 139 (2019) 844–858.

Bouchouicha, K.; Bailek, N.; Mahmoud, M.; Alonso, J.; Slimani, A.; Djaafari, A. Estimation of monthly average daily global solar radiation using meteorological-based models in Adrar, Algeria. Appl Sol Energy 54 (2018) 448–455.

Stambouli, A.; Khiat, Z.; Flazi, S.; Kitamura, Y. A review on the renewable energy development in Algeria: current perspective, energy scenario and sustainability issues. Renew Sustain Energy Rev. 16 (2012) 4445–4460.

Bailek, N.; Bouchouicha, K.; Yasser, A.; El-Shimy, A.; Slimani, A.; Basharat, J. & Djaafari, A. Developing a new model for predicting global solar radiation on a horizontal surface located in Southwest Region of Algeria. NRIAG Journal of Astronomy and Geophysics. 9 (2020) 341-349.

Bouchouicha, K.; Razagui, A.; Bachari, N.; Aoun, N. Mapping and geospatial analysis of solar resource in Algeria. Int J Energy Environ Econ. 23 (2015) 735–751.

Benatiallah, D.; Benatiallah, A., Bouchouicha, K. Model for obtaining the daily direct and diffuse solar radiations. International Journal of Science and Applied Information Technology 7 (2017) 50-55.

Jamil, B.; Akhtar, N. Estimation of diffuse solar radiation in

humid-subtropical climatic region of India: comparison of diffuse fraction and diffusion coefficientmodels. Energy 131 (2017) 149–164.

Bakirci, K. Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey. Energy 34 (2009) 485–501.

Benatiallah, D.; Benatiallah, A.; Hamouda, M.; Bouchouicha, K.; Harouz, A. Model R.Sun for obtaining the daily global solar. International Journal of Science and Applied Information Technology 7 (2017) 83-88.

Jamil, B.; Siddiqui, A. Generalized models for estimation of diffuse solar radiation based on clearness index and sunshine duration in India: applicability under different climatic zones. J Atmos Solar-Terrestrial Phys. (2017) 157–158.

Benatiallah, D.; Benatiallah, A.; Bouchouicha, K.; Hamouda, M. and Nasri, B. An empirical model for estimating solar radiation in the Algerian Sahara. American Institute of Physics. 7 (2018) 710–727.

Ashrae. Handbook of fundamentals. Atlanta, Georgia: American Society of Heating, Refrigeration, and Air-Conditioning Engineers (1985).

Kaushika, N.; Tomar, R.; Kaushik, S. Artificial neural network model based on interrelationship of direct, diffuse and global solar radiations. Solar Energy 103 (2014) 327-342.

Victor, H.; Javier, A.; Javier, A. and Laurel, S. ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment. Journal of Atmospheric and Solar–Terrestrial Physics 155 (2017) 62–70.

Benatiallah, D.; Benatiallah, A.; Bouchouicha, K.; Nasri, B. Prediction du rayonnement solaire horaire en utilisant les reseaux de neurone artificiel. Algerian J. Env. Sc. Technology. 6 (2020) 1236-1245.

Kisi, O. Modeling solar radiation of Mediterranean region in Turkey by using fuzzy genetic approach. Energy 64 (2014) 429-36.

Dahmani, K.; Dizene, R.; Notton, G.; Paoli, C.; Voyant, C.; Nivet, M. Estimation of 5-min time-step data of tilted solar global irradiation using ANN (Artificial Neural Network) model. Energy 70 (2014) 374-81.

Rehman, S. and Mohandes, M. Artificial neural network estimation of global solar radiation using air temperature and relative humidity. Energy Policy 36 (2008) 571- 576.

Mohammadi, K.; Shamshirband, S.; Petković, D.; Khorasanizadeh, H. Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: City of Kerman, Iran. Renew. Sustain. Energy Rev. 53 (2016) 1570–1579.

Kumar, R.; Aggarwal, R.; Sharma, J. Comparison of regression and artificial neural network models for estimation of global solar radiations. Renew. Sustain. Energy Rev. 52 (2015) 1294–1299.

Sumithira, T.; Kumar, A.; Rameshkumar, R. An adaptive neuro-fuzzy inference system (ANFIS) based prediction of solar radiation. J. Appl. Sci. Res 8 (2012) 346–351.

Olatomiwa, L.; Mekhilef, S.; Shamshirband, S.; Mohammadi, K.; Petković, D.; Sudheer, C. A support vector machine–firefly algorithm-based model for global solar radiation prediction. Sol. Energy 115 (2015) 632–644.

Yingni, J. Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models, Energy Policy 36 (2008) 3833–3837.

Benatiallah, D.; Benatiallah, A.; Harouz, A.; Bouchouicha, K. Development and Modeling of a Geographic Information System solar flux in Adrar, Algeria. International Journal of System Modeling and Simulation. 1 (2016) 15-19.

Journée, M.; Bertrand C. Quality control of solar radiation data within the RMIB solar measurements network. Sol Energy 85 (2011) 72–86.

Jiang, Y. Estimation of monthly mean daily diffuse radiation in China. Appl. Energy 86 (2009) 1458–1464.

Khorasanizadeh, H.; Mohammadi, K. Prediction of daily global solar radiation by day of the year in four cities located in the sunny regions of Iran. Energy Convers. Manag. 76 (2013) 385–392.

Jang, J. ANFIS: adaptive-network-based fuzzy inference system. Syst. Man Cybern. IEEE Trans. 23 (1993) 665–685.

Abdulshahed, A.; Longstaff, A.; Fletcher, S. The application of ANFIS prediction models for thermal error compensation on CNC machine tools. Appl. Soft Comput. 27 (2015) 158–168.

Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration-guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56.FAO, Rome 300, 6541. (1998).

Stone, RJ. Improved statistical procedure for the evaluation of solar radiation estimation models, Solar Energy 51 (1993) 289–91.

Teke, A.; Yıldırım, H.; Çelik, Ö. Evaluation and performance comparison of different models for the estimation of solar radiation. Renew. Sustain. Energy Rev. 50 (2015) 1097–1107.

Perveen, G.; Rizwan, M.; Goel, N. An ANFIS-based model for solar energy forecasting and its smart grid application. Engineering Reports. (2019).

Muhammad, A.; Gaya, MS.; Aliyu, R. et al. Forecasting of global solar radiation using ANFIS and ARMAX techniques. IOP Conf Ser Mater Sci Eng. 303 (2018) 1-6.

Alparslan, N.; kayabaşi, A. and ruşen S. Estimation of Global Solar Radiation by Using ANN and ANFIS, Innovations in Intelligent Systems and Applications Conference (ASYU), Izmir, Turkey, (2019) 1-6.

Bouchouicha, K.; Bailek, N.; Bellaoui, M.; Oulimar, B. Estimation of Solar Power Output Using ANN Model: A Case Study of a 20-MW Solar PV Plan at Adrar, Algeria. Lecture Notes in Networks and Systems. (2020).

Oulimar, I.; Benatiallah, A.; Bouchouicha, K. Validation Modeles and Simulation of Global Horizontal Solar Flux as a Function of Sunshine Duality in Southern Algeria (Adrar). Lecture Notes in Networks and Systems. (2020).

Benatiallah, A.; Benatiallah, D.; Ghaitaoui, T.; Harrouz, A.; Mansouri, S. Modelling and Simulation of Renewable Energy Systems in Algeria, International Journal of Science and Applied Information Technology 7 (2017) 17-22.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License. Copyright UMMB © 2020 University M'hamed Bougara - Boumerdes. Independance AV., Boumerdes, 35000 Algeria, Tel/Fax: +213 24 91 14 98/ +213 2491-29-51